High-Dimensional Manifold Geostatistics
نویسنده
چکیده
An understanding of the Earth’s climate system benefits all sectors of the economy and environment. Several challenges faced when modeling the Earth’s climate system include: estimating geographical features of global datasets, making inferences from multiple data-products, and providing diagnostic tools for complex Earth models. Existing geostatistical approaches address these challenges by modeling points on a high-dimensional space. However, we know that many of the climate datasets additionally have inherent high-dimensional geometric structures. In this talk, I will provide new insights into problems in climate data science by exploring high-dimensional geometric structures on a manifold. First, I will discuss an approach to improve future projections of a climate variable (e.g., sea-level changes, precipitation changes) by learning the scale of correlation, an essential regional feature of climate datasets. Second, I will provide a new framework for data-fusion from multiple sources of information for a given climate variable. Third, I will describe diagnostic tools we created to compare and emulate various Earth system models from numerous international teams and for differing future climate scenarios. With these contributions, I will demonstrate that we can improve the inferences made from geostatistical models by including information about the high-dimensional structures of climate datasets. The proposed novel framework will benefit not only the climate community but also decision makers when identifying plans to mitigate the impact of climate change. Defense Committee: Prof. Dimitris Metaxas (Chair), Prof. Vladimir Pavlovic, Prof. Kostas Bekris, Dr. Doug Nychka (National Center for Atmospheric Research)
منابع مشابه
On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملآموزش منیفلد با استفاده از تشکیل گراف منیفلدِ مبتنی بر بازنمایی تنک
In this paper, a sparse representation based manifold learning method is proposed. The construction of the graph manifold in high dimensional space is the most important step of the manifold learning methods that is divided into local and gobal groups. The proposed graph manifold extracts local and global features, simultanstly. After construction the sparse representation based graph manifold,...
متن کاملبهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کامل